首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2157篇
  免费   340篇
  国内免费   152篇
测绘学   23篇
大气科学   10篇
地球物理   665篇
地质学   1767篇
海洋学   20篇
天文学   1篇
综合类   80篇
自然地理   83篇
  2024年   2篇
  2023年   10篇
  2022年   39篇
  2021年   58篇
  2020年   64篇
  2019年   57篇
  2018年   52篇
  2017年   59篇
  2016年   93篇
  2015年   90篇
  2014年   112篇
  2013年   130篇
  2012年   68篇
  2011年   73篇
  2010年   93篇
  2009年   169篇
  2008年   222篇
  2007年   206篇
  2006年   212篇
  2005年   145篇
  2004年   117篇
  2003年   74篇
  2002年   69篇
  2001年   63篇
  2000年   49篇
  1999年   55篇
  1998年   46篇
  1997年   39篇
  1996年   32篇
  1995年   40篇
  1994年   28篇
  1993年   28篇
  1992年   15篇
  1991年   2篇
  1990年   6篇
  1989年   5篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1971年   1篇
  1954年   1篇
排序方式: 共有2649条查询结果,搜索用时 609 毫秒
71.
One of the most significant water resources in the Republic of Croatia is the catchment area of the Kupa River, located in the region bordering the Republic of Slovenia. About 88% of the total amount of water in this catchment originates in Croatia and just 12% from Slovenia; therefore, the largest part of the catchment area (about 1000 km2) is on the Croatian side of the border. It is a typical karst area of the Dinarides with aquifers characterized by a relatively rapid water exchange, high groundwater flow velocities and aquifers open to human impact from the surface. Consequently, the aquifers are highly vulnerable and at risk. Due to the availability of large quantities of high-quality spring water (about 6 m3/s), the entire area has a strategic importance within the context of any future development strategy pertaining to the western part of Croatia. The catchment area on the Croatian side was investigated using a wide range of research methods that included a classical hydrogeological approach, the detailed hydrologic calculation of water balance to the hydrogeochemical analyses and modelling. The objective was to determine protection zones and protection measures for the whole area. The difficulties are increased due to the fact that the karst catchment area is crossed by major traffic corridors, oil pipelines and a railway and that many settlements and a highly developed wood industry are present. The combination of protecting water resources with adequate prevention measures and necessary remedial activities that should satisfy the very strict requirements necessary for the protection of the karst aquifers while still allowing for present and future human activities is difficult – but not impossible – to achieve. One good example is the present highway with a closed dewatering system and waste water treatment before the water passes into the karst underground system.  相似文献   
72.
Declining water level trends and yields of wells, deterioration of groundwater quality and drying up of shallow wells are common in many parts of India. This is mainly attributed to the recurrence of drought years, over exploitation of groundwater, increase in the number of groundwater structures and explosion of population. In this subcontinent, the saving of water has to be done on the days it rains. India receives much of its rainfall in just 100 h in a year mostly during the monsoon period. If this water is not captured or stored, the rest of the year experiences a precarious situation manifest in water scarcity. The main objective behind the construction of subsurface dams in the Swarnamukhi River basin was to harvest the base flow infiltrating into sandy alluvium as waste to the sea and thereby to increase groundwater potential for meeting future water demands. An analysis of hydrographs of piezometers of four subsurface dams, monitored during October 2001–December 2002, reveals that there is an average rise of 1.44 m in post-monsoon and 1.80 m in the pre-monsoon period after the subsurface dams were constructed. Further, during the pre-monsoon month of June, much before construction of subsurface dams in October 2001, the water level was found fluctuating in the range of 3.1–10 m, in contrast to the fluctuation ranging from 0.4 to 3.1 m during the period following the construction of dams. Hence, the planning of rainwater harvesting structures entails thorough scientific investigations for identifying the most suitable locations for subsurface dams.  相似文献   
73.
This paper illustrates how sensitivity analysis and a worst-case scenario analysis can be useful tools in risk assessment of groundwater pollution. The approach is applied to a study area in Hungary with several known groundwater pollution sources and nearby drinking water production wells. The main concern is whether the contamination sources threaten the drinking water wells of the area. A groundwater flow and transport model is set up to answer this question. Due to limited data availability, the results of this model are associated with large uncertainty. Sensitivity analysis and a worst-case scenario analysis are applied to estimate this uncertainty and build confidence in the model results.  相似文献   
74.
Eighty-seven groundwater samples have been collected from a mountainous region (Alvand, Iran) for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. Most water quality parameters are within World Health Organization acceptable limits set for drinking water. The least mineralized water is found closest to the main recharge zones and the salinity of water increased towards the north of the basin. The most prevalent water type is Ca–HCO3 followed by water types Ca–NO3, Ca–Cl, Ca–SO4 and Mg–HCO3. The Ca–NO3 water type is associated with high nitrate pollution. Agricultural and industrial activities were associated with elevated level of NO3. Mineral dissolution/weathering of evaporites dominates the major element hydrochemistry of the area. Chemical properties of groundwater in Alvand region are controlled both by natural geochemical processes and anthropogenic activities.  相似文献   
75.
A new approach to the method of artificial upraising of the water outlet point, for management and development of brackish karst springs, uses the MODKARST model. Brackish karst springs simulation can be used to estimate the necessary upraising of the spring elevation, so that sea-water intrusion is blocked. The consequent freshwater loss to the sea, due to this upraising, can also be estimated. The method has been applied to the periodically brackish karst Almiros spring at Heraklion of Crete, Greece. The spring simulation showed that the sea-water intrusion could be prevented through an artificial upraising of the water-outlet point, realized by the construction of a dam. The exact upraising has been estimated. Freshwater loss to the sea because of this upraising has also been estimated. The model could also be used as a tool for the management of the spring. For example, it was used to assess management options for the spring during the depletion period of the year 1994. The best scenario for the development of the spring during this period has been estimated.  相似文献   
76.
Systematic field mapping of fracture lineaments observed on aerial photographs shows that almost all of these structures are positively correlated with zones of high macroscopic and mesoscopic fracture frequencies compared with the surroundings. The lineaments are subdivided into zones with different characteristics: (1) a central zone with fault rocks, high fracture frequency and connectivity but commonly with mineral sealed fractures, and (2) a damage zone divided into a proximal zone with a high fracture frequency of lineament parallel, non-mineralized and interconnected fractures, grading into a distal zone with lower fracture frequencies and which is transitional to the surrounding areas with general background fracturing. To examine the possible relations between lineament architecture and in-situ rock stress on groundwater flow, the geological fieldwork was followed up by in-situ stress measurements and test boreholes at selected sites. Geophysical well logging added valuable information about fracture distribution and fracture flow at depths. Based on the studies of in-situ stresses as well as the lineaments and associated fracture systems presented above, two working hypotheses for groundwater flow were formulated: (i) In areas with a general background fracturing and in the distal zone of lineaments, groundwater flow will mainly occur along fractures parallel with the largest in-situ rock stress, unless fractures are critically loaded or reactivated as shear fractures at angles around 30° to σH; (ii) In the influence area of lineaments, the largest potential for groundwater abstraction is in the proximal zone, where there is a high fracture frequency and connectivity with negligible fracture fillings. The testing of the two hypotheses does not give a clear and unequivocal answer in support of the two assumptions about groundwater flow in the study area. But most of the observed data are in agreement with the predictions from the models, and can be explained by the action of the present stress field on pre-existing fractures.  相似文献   
77.
The Tyrell catchment lies on the western margin of the Riverine Province in the south-central Murray Basin, one of Australia’s most important groundwater resources. Groundwater from the shallow, unconfined Pliocene Sands aquifer and the underlying Renmark Group aquifer is saline (total dissolved solids up to 150,000 mg/L) and is Na-Cl-Mg type. There is no systematic change in salinity along hydraulic gradients implying that the aquifers are hydraulically connected and mixing during vertical flow is important. Stable isotopes (18O+2H) and Cl/Br ratios indicate that groundwater is entirely of meteoric origin and salts in this system have largely been derived by evapotranspiration of rainfall with only minor halite dissolution, rock weathering (mainly feldspar dissolution), and ion exchange between Na and Mg on clays. Similarity in chemistry of all groundwater in the catchment implies relative consistency in processes over time, independent of any climatic variation. Groundwater in both the Pliocene Sands and Renmark Group aquifers yield ages of up to 25 ka. The Tyrrell Catchment is arid to semi-arid and has low topography. This has resulted in relatively low recharge rates and hydraulic gradients that have resulted in long groundwater residence times.  相似文献   
78.
Karst aquifer components that contribute to the discharge of a water supply well in the Classical Karst (Kras) region (Italy/Slovenia) were quantitatively estimated during storm events. Results show that water released from storage within the epikarst may comprise as much as two-thirds of conduit flow in a karst aquifer following rainfall. Principal components analysis (PCA) and end-member mixing analysis (EMMA) were performed using major ion chemistry and the stable isotopes of water (δ18O, δ2H) and of dissolved inorganic carbon (δ13CDIC) to estimate mixing proportions among three sources: (1) allogenic river recharge, (2) autogenic recharge, and (3) an anthropogenic component stored within the epikarst. The sinking river most influences the chemical composition of the water-supply well under low-flow conditions; however, this proportion changes rapidly during recharge events. Autogenic recharge water, released from shallow storage in the epikarst, displaces the river water and is observed at the well within hours after the onset of precipitation. The autogenic recharge end member is the second largest component of the well chemistry, and its contribution increases with higher flow. An anthropogenic component derived from epikarstic storage also impacts the well under conditions of elevated hydraulic head, accounting for the majority of the chemical response at the well during the wettest conditions.  相似文献   
79.
Twenty-six groundwater samples were collected from the Eastern Thessaly region and analysed by ICP-ES for these elements: Al, As, P, Pb, Zn, Mn, Fe, Cr, Sb, Cu, Na, Br, Cl, Si, Mg, Ag, Be, Bi, Dy, Er, Eu, Au, Ge, Ho, In, Ir, Os, Pt, Re, Rh, Ru, Lu, Hf, Hg, Tm, Zr and Nb. The objectives of the study were to assess the level of water contamination with respect to the EC and the USEPA health-based drinking water criteria. The geology of the studied area includes schists, amphibolites, marbles of Palaeozoic age, ophiolites, limestones of Triassic and Cretaceous age, Neogene and Quaternary deposits. The element ranges for groundwater samples are: Al 7–56 μg l−1, As 1–125 μg l−1, Br 6–60 μg l−1, Cl 500–25,000 μg l−1, Cr 1–6 μg l−1, Cu 1–15 μg l−1, Fe 10–352 μg l−1, Mg 2,940–40,100 μg l−1, Mn 0–8 μg l−1, Na 3,650–13,740 μg l−1, P 20–48 μg l−1, Pb 0–7 μg l−1, Sb 0–21 μg l−1, Si 3,310–13,240 μg l−1 and Zn 7–994 μg l−1. The results of groundwater analyses from the region of Eastern Thessaly showed elevated concentrations of As and Sb. Factor analysis explained 77.8% of the total variance of the data through five factors. Concentration of Br, Cl, Mg, Na and Si is directly related to the presence of saltwater in the aquifer, so grouping of these variables in factor 1 probably reflects the seawater intrusion. Al, As and Sb are known to form complexes in the environment, so grouping of these elements in factor 2 indicates their similar geochemical behaviour in the environment. The high negative loading of Mn in factor 2 indicates the presence of manganese oxides–hydroxides in the study area. Pb and Zn are associated together in sulphide mineralisation; so grouping of these elements in factor 3 reflects the sulphide mineralization paragenesis in the Melivoia area. P and Cu are associated together in phosphate fertilizers; so grouping of these variables in factor 4 could be related to agricultural practices. Cr, Fe, Mn and Mg are associated together in iron and manganese oxides–hydroxides and the weathering products of the olivine of the ultrabasic rocks; so grouping of these elements in factor 5 reflects the lithology of the area. There is a natural contamination of groundwaters with elevated concentrations of As and Sb due to the presence of the arsenopyrite and stibnite mineralisation in the Melivoia, Sotiritsa and Ano Polydendri areas. Contamination over the health-based drinking water guidelines given by EC and EPA has been investigated from nine sampling sites out of 26 of Eastern Thessaly region.  相似文献   
80.
The only source of drinking water in Vilnius City, Lithuania's capital, is groundwater. It can be supplied from 20 wellfields situated in the City or its environs. About half of them (11) are located in the valley of the Neris River crossing the City. The exploited aquifers were formed by melting continental glaciers and modified by the river. Until 1990 groundwater resources had not been conserved—the per capita consumption for domestic use in Vilnius reached 350 l/day. After 1990, due to the increasing cost of supplying drinking water, its consumption was reduced by a factor of three. As pumping rates of wellfields in Vilnius were increased or decreased, the groundwater quality was changed significantly. It is mainly affected by the surface water and shallow aquifers of the hydrologic system. The unoxidised organic matter that enters the exploitable aquifers from rivers and polluted shallow groundwater consumes scarce oxygen resources, thus creating anoxic conditions favourable for increasing the accumulation of iron, manganese and ammonium. Modelling and monitoring data show that the concentrations of sulphates and chlorides in Vilnius wellfields indicate not only the rise of brackish water from below, but also downward seepage of polluted surface water into the aquifers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号